EMU award lecture – 29th January 2021

The recipient of the 2019 Research Excellence Award of the European Mineralogical Union is Dr. Nadège Hilairet from CNRS and Université de Lille, France. She received the award for her outstanding contributions to understanding rock deformation and rheology as well as for her international collaborative research.

On Friday, 29th January 2021, at 11.00 am CET (10.00 am GMT), via Zoom, Dr Hilairet will deliver a lecture: Deformation and transformation of subduction zone hydrous minerals and rocks

This is free to all to attend but pre-registration is required here.

Blank faces, or blank screens? Teaching in Higher Education under conditions of the “new norm”.

By Wesley Fraser

The covid-19 pandemic has substantially changed the face of teaching in HE. Rather than walking around waving our arms in front of lecture halls full of students we are sat in front of computer screens, wearing headphones and speaking to a microphone. When teaching face-to-face I often experience blank faces staring back at me as I delve into the more complex aspects of whatever the topic might be that day (e.g. partial differential equations for physical oceanography), but, hopefully, there is that moment of enlightenment when my students begin to grasp the key concepts. A wave of changes in facial expression sweep across the lecture hall, and this is actually a pretty good feeling – one of the big feel-good factors with teaching! However, we are now working under the “new norm” where large group teaching is being delivered via Zoom (or equivalent online mass-conferencing software), and often the only camera that is switched on is that of the staff member delivering the session. How does one judge the reaction of a student cohort to challenging material when all are blanks screens? The instantaneous visual clues that serve as feedback are no longer available to us to judge when to repeat a section, or if something we have just said needs breaking down a little into more manageable chunks to aid understanding.

A typical view of a virtual teaching session with most participants switching off their webcams. Note: identities have been redacted for privacy.

While this may initially sound like a problem, I think online-learning has a lot to offer. Indeed, from my own experiences this semester, I have already found there to be so many more questions being asked during the lecture sessions, and often these questions are more insightful and probing than those I might normally receive in a physical lecture room environment. Perhaps the relative anonymity of a virtual lecture room provides a more secure environment to pose such questions, primarily via the chat function in a direct message to the lecturer, thus avoiding any perceived peer-judgements? So, while online virtual teaching in higher education may be a different experience to what we are used to, this does not mean it is a bad experience, merely different.

I know for my own teaching delivery I have already learned a great deal; it has made me think harder about what I deliver, and how it is delivered, as well as force me to develop new methods of conveying information that until now have been relatively dry lectures. The greatest success I have had so far has involved activities/exercises that require access to computers, e.g. analysis of data, running computer models etc.; as is often the case, module cohorts are too large for any single computer laboratory, thus multiple repeat sessions must be run, which is inherently inefficient and time-consuming – when teaching virtually, all participants are already sat facing a computer, resulting in a more-direct, focused learning experience. Looking to the future, I fully intend to embrace blended learning within my modules, particularly in light of the opportunities for computer-based exercises that require sole-access to a computer station.

It would be interesting to hear about online teaching experiences from across the geochemistry community – please feel free to share via our Twitter feed using the #geochemHEonline.

Back to the labs…

By Marie-Laure Bagard

Here we go, we have spent several weeks crafting countless risk assessments and working on new protocols to make the labs safe, the University has authorised the re-opening of the buildings and essential lab work to be carried out, so lab work can resume… Can’t it ?

Lab work actually seems to be a whole different ball game than it was before the pandemic. Working mostly in a laboratory suite made of several individual clean rooms, I thought that not much would change for our group. Making the place covid-19 safe wasn’t too tricky. Setting up a buddy system to make sure that people working alone wouldn’t harm themselves wasn’t exactly a challenge. But how do you work in a clean lab when you can’t chat with your lab mates -often friends- while your columns are dripping ? How do you learn how to use a mass spec when you can’t pop your head into the lab manager’s office to check that the weird behaviour of the instrument is actually its normal behaviour (office work still being off-limits) ? Of course, you can send them a message, but online chats will never replace all these informal interactions that set the tempo of our work days and teach us so much.

And beyond, it is actually most of the social life of our department that we have to do without. How do you avoid melting down in front of a temperamental plasma if you can’t go down to the common room for a coffee break ? (Or happy hour !) Or if you simply can’t go to your office for a chat with you officemates ? Lab work, like many other aspects of research, is much more than the addition of a few tasks carried out in a bubble, and this pandemic forces us all to learn new ways of working, of being a research group, and being there for each other.

How have things been for you ? Are you still working from home ? Are you back in the labs ? What are your tips for adjusting to the new rules and all that they entail ?

The European Lunar Symposium comes to Manchester!

by Trish Clay

The 2019 European Lunar Symposium was held in Manchester from the 21st-23rd of May. This year, ELS has special significance, as 2019 marks the celebration of the 50th anniversary of the Apollo moon landing in 1969 (https://www.nasa.gov/specials/apollo50th/). Participants from all over Europe gathered together at Manchester’s Science and Industry Museum (https://www.scienceandindustrymuseum.org.uk) for a series of science talks, posters, and space agency panel discussions, covering all aspects of lunar science and the future of lunar exploration. The week kicked off at the University of Manchester with NASA’s chief scientist, Dr. Jim Green, giving a public lecture on the history and future of lunar exploration and lunar science (The Importance of the Moon: Past, Present and Future). The lecture can be viewed here: https://youtu.be/vjysIegMg_4.

Participants from the 2019 European Lunar Symposium gathered outside the Science and Industry Museum in Manchester. Photo credit: Dr. K.H. Joy

For information on the meeting, including abstracts, check out this link: https://els2019.arc.nasa.gov/

Alternatively, for a quick summary, you can check out this Vlog from the Earth and Solar System and the Cosmic Cast teams based at the University of Manchester: https://youtu.be/UzX8GfiZqyI

Pint of Science

by Rachael Shuttleworth

Pint of Science is the largest science festival in the world- operating in over 400 cities across 24 countries. This year from 20-21-22nd May researchers came together with members of the public to share the story of their science over a pint at a local pub, bar or café.

It started back in 2012 with a couple of post docs in their local pub in London and has expanded to almost every city across the UK. This year I had the opportunity to organise the ‘Planet Earth’ events in Southampton. Over the 3 nights we had 8 speakers from the University of Southampton and the National Oceanography Centre, Southampton. The first evening theme was the ‘biology of time’ looking at crop evolution and body clocks which brought two speakers from the biology department. The second night “Nature’s Fury” included talks about the large scale earthquakes that occur in subduction zones and the causes of sea level rise. Prof. Simon Kemp led a very energetic ‘model United Nations’ activity where regions had to work together to get their top sustainable development goals voted through. The final night had an oceans themes, with talks from three speakers around plastic pollution, deep sea sediment avalanches, and what we can learn about sustainable cities from coral ecology.

Pint of Science is a fantastic event, held annually, which aims to bring together researchers, science and local communities. It is a really fun event to get involved with, and almost entirely run by volunteers. I could not recommend getting involved with it enough, whether that is helping to organise it in your city, volunteering to give a talk, or simply going along to one for drink!

For more information: https://pintofscience.com/

Influence of Indian Summer Monsoon on Deglaciation c.130,000 years ago.

By Katrina Nilsson-Kerr

Understanding of how the monsoon systems of Asia, the East Asian Monsoon and Indian Monsoon, responded to past changes in climate has undergone debate within the palaeoclimate community due to gaps in data at both the temporal and spatial scale (https://www.nature.com/articles/nature18591). Assumptions have been made to infer both of these monsoonal systems to respond similarly to climate forcing. However, a spate of new research has pointed to more complex controls on the past behaviour of the East Asian Monsoon (http://science.sciencemag.org/content/360/6391/877, https://www.nature.com/articles/s41467-018-05814-0) and Indian Monsoon (https://www.nature.com/articles/s41467-018-07076-2 ) systems than previously thought. Our study, published in Nature Geoscience (https://www.nature.com/articles/s41561-019-0319-5), provides further insights into the past behaviour of the Indian Summer Monsoon, its relationship with the East Asian Summer Monsoon and global climate evolution during the penultimate deglaciation (127 to 140 thousand years ago).

Figure: G. ruber used in this study (left hand panel); Joides Resolution – the vessel used in the IODP expedition. Images: P. Anand.

We have exploited International Ocean Drilling Program (IODP) Expedition 353, Site U1446 situated in the northern Bay of Bengal. This location is uniquely situated as it captures surface freshening and increased terrigenous fluxes associated with increased rainfall and fluvial runoff during the summer monsoon season permitting reconstruction of a primary and direct signal of the Indian Summer Monsoon using a range of geochemical proxies. By combining Mg/Ca derived SST’s in planktic foraminifera with their oxygen isotope composition (δ18OC) a proxy for local surface freshening can be extracted; the oxygen isotope composition of the seawater (δ18Osw-IVC). This record of surface freshening is combined with proxies inferred to represent increased terrigenous fluxes to the site during periods of strengthened monsoon; planktic foraminifera Mn/Ca, Nd/Ca and U/Ca are presented in a novel application to reconstruct fluvial runoff.

Our records show that during deglaciation the Indian Summer Monsoon responded to warming in the southern hemisphere while the rest of the northern hemisphere, including the East Asian Summer Monsoon, remained largely in a glacial state. It is inferred that this strengthening of the Indian Summer Monsoon promoted cross-equatorial transport of heat and moisture from the warm, deglacial southern hemisphere into the northern hemisphere. However, full deglacial strengthening of the monsoon occurs following warming in the northern hemisphere. Thus, conveying that the monsoon is an incredibly dynamic system and is not biased to climatic conditions within a specific hemisphere. Ultimately, it is suggested that components of Earth’s internal climate system should not be viewed in isolation; the monsoon and high-latitudes are intrinsically linked.


The Present is the Key to the Past

Trace element and isotope proxies in paleoceanography: A synthesis workshop

3 – 5 December 2018, Aix-Marseille, France


Report by Susan Little

At a workshop in December, scientists from 11 countries and 4 continents converged on Chateauneuf de Rouge, Southern France. With expertise spanning modern and paleoceanography, we gathered to talk biology, ocean circulation, particle fluxes, and models of the present and past oceans…

Why focus on the oceans?

In short, the oceans, and the bugs growing in them, are a vital part of Earth’s climate system.

Microscopic algae in the sunlit upper ocean use carbon (from carbon dioxide, CO2) to build their cells. After they die, they sink and decay, a process that ‘pumps’ CO2 from the surface ocean to the deep.

Once in the deep ocean, the CO2 is trapped for hundreds, or even thousands, of years. This process reduces the level of CO2 in the atmosphere, and the resultant greenhouse effect, cooling the planet.

The Present is the Key to the Past?

Charles Lyell famously wrote: ‘The Past is the Key to the Present’. Scientists even use the past to help predict what might happen in the future warming world.

But how do we figure out what happened in the past? The past oceans are long gone, so scientists use proxies to reconstruct particular ocean properties.

Interesting properties might include the availability of nutrients that algae need to grow, or the patterns of ocean currents. Past ocean proxies include a spectrum of all kinds of bio/geo/chemical measurements, made in all sorts of seawater archives, from individual microfossils to ancient sediments collected from the seafloor.

To develop proxies, it turns out that the present is the key

Tuning your Time Machine

A good proxy is a real life Tardis, allowing us to go back in time… But how do we know what, and how well, a proxy is recording an ocean property?

To test and improve a proxy (e.g., Cd/Ca ratios in microfossils as a record of past nutrients) scientists compare modern measurements of the property in seawater (e.g., nutrient concentrations) with the value recorded by the proxy in its modern archive (e.g., in modern microorganisms).

At this workshop, we set out to improve our understanding and application of a range of proxies. We used what we have learned from the modern ocean in the international GEOTRACES program (www.geotraces.org).

The Modern Ocean

Since 2006, GEOTRACES has completed 109 cruises and released two Intermediate Data Products (IDP), in 2014 and in 2017. The IDP2017 includes data from 41 cruises, more than 1866 stations, 470 parameters and 51000 samples

That’s a lot of data! And it’s all freely available to download here: https://www.bodc.ac.uk/geotraces/data/idp2017/

The Wine Work

The workshop addressed the following questions:

State of the Art

What trace element and isotope proxies are currently being measured and modelled in the ocean?


Can we use data from GEOTRACES to improve our understanding of proxies for use by the paleaoceanographic (PAGES, www.pastglobalchanges.org) community?


What future technical developments, modelling approaches, cruises or other activities would help to develop or interpret proxy distributions?

It was a fascinating, stimulating, interdisciplinary three days of discussion. Thanks to everyone who was involved[i]. Watch this space for upcoming workshop products!

[i]More details of the workshop:


Thanks to the Sponsors:

PAGES, GEOTRACES, SCOR, US-NSF, Aix-Marseille Université and John Cantle Scientific


Meet the committee

The current Geochemistry Group committee are:


Chair: Dr Christopher Pearce. Senior Research Scientist, National Oceanography Centre, Southampton.

Secretary: Dr Marc-Alban Millet. Lecturer in isotope geochemistry, Cardiff University, Cardiff.

Treasurer: Dr Sam Hammond. Geochemistry project officer, The Open University, Milton Keynes.

Communications: Dr Wesley Fraser. Reader in physical geography, Oxford Brookes University, Oxford.

Ordinary members

Dr Susan Little, Imperial College, London.

Dr Christian März, University of Leeds.

Dr Andrea Burke, University of St. Andrews.

Prof. Craig Storey, University of Portsmouth.

Dr David van Acken, University College, Dublin.

Dr Nicola Potts, University of Edinburgh.

Dr Patricia Clay, University of Manchester.

Co-opted members

Dr Marie-Laure Bagard, University of Cambridge.

Dr Gordon Inglis, University of Bristol.

Post-graduate student representative

Ms. Rachael Shuttleworth, University of Southampton.


Goldschmidt 2018, Boston. 

by David van Acken.

The 28th Annual Goldschmidt Conference was held at the Hynes Conference Center in Boston, MA, from August 12th to 17th 2018, assembling around 3500 geochemists from all over the world. With the usual wide spread of topics from the origins of the solar system via biogeochemistry to the management of mining and nuclear waste, this year’s edition had a distinct tilt towards low-temperature geochemistry. Over five days, 16 parallel sessions, plus a joint poster and industry exhibition area allowed for scientific exchange. Plenaries covered topics of exploration of habitable planets, oxygen cycling in coastal waters, inclusivity and diversity, microbial life in planetary interiors and the evolution of Earth’s volatiles. Notably, the poster session on outreach and public education was running on all conference days, highlighting the commitment of the geochemistry community to reach a broader audience than just specialists in the respective fields. Workshops were organized around the conference schedule covering the same wide range of topics presented in the scientific program, and pre- and post-conference field trips allowed for exploration of the geology and marine life of New England.


The science presented at the meeting was excellent, with many presentations by students showcasing their projects. Decade-old paradigms such as the Lunar Cataclysm were called into question, showing that the Goldschmidt conference is the prime outlet for new results and hypotheses in geochemistry.

The social events took full advantage of the diversity of the culture and academic landscape of Boston: in addition to the icebreaker and the society receptions, events were held and Fenway Park, home stadium of the Boston Red Sox baseball team, and the Harvard Mineralogical and Geological Museum. The banquet dinner took place in the ballroom of the conference centre.

The conference was a well-organized success, supported by many student helpers and the organization committee. Next year’s edition in Barcelona is eagerly anticipated!

2018 Geochemistry Group Postdoctoral Awards Announced

by Susan H. Little

Winning Geochemists!

For the third year in a row, the Geochemistry Group is thrilled to award two Postdoctoral Prizes, recognizing the outstanding work being carried out by UK-based early career researchers.

We are delighted to announce that the 2018 winners are:

Postdoctoral Medal: Alex J. McCoy-West

ECR Prominent Lecturer: Rosalie Tostevin

ECR Prominent Lecturer

Dr Tostevin is currently a Postdoctoral Research Assistant at the University of Oxford. Her research primarily focuses on the interactions between life and the environment on the early Earth.

She will be offering a choice of two talks on her fully funded (Agilent Technologies) UK-wide tour in 2018-19. Interested institutions are encouraged to contact the Geochemistry Group in the first instance.

The first talk will describe a radical new theory for the genesis of ancient sediments, which transforms our understanding of ocean chemistry and has implications for microbial evolution.

The second lecture will share five years of work tracking the distribution of oxygen in Neoproterozoic basins, and discusses the consequences for early animal life.

Rosalie follows in the footsteps of the successful tours of Dr David Wilson (2017-18) and Dr Kate Kiseeva (2016-17). We can’t wait!

The Geochemistry Group would like to thank Agilent Technologies for generously providing financial support for this award.

Postdoctoral Medal

This year, the Geochemistry Group Postdoctoral Medal was awarded to Dr McCoy-West for the following outstanding paper:

McCoy-West, A.J., Millet, M.A. and Burton, K.W., 2017. The neodymium stable isotope composition of the silicate Earth and chondrites. Earth and Planetary Science Letters, 480, pp.121-132. doi: 10.1016/j.epsl.2017.10.004

This paper presents the first accurate and precise measurement of Nd stable isotope compositions and uses a combination of a double-spike techniques and high-precision TIMS analyses. As such, it marks a significant breakthrough in measuring stable Nd isotopes.

As well as representing a major analytical advance, the paper addresses the problem of the non-chondritic neodymium (Nd) 142Nd/144Nd ratio of the silicate Earth, which has been attributed variously to collisional erosion, nucleosynthetic variations between solar system bodies, or segregation of sulphide to the core.

The data show that chondrites and the silicate Earth possess an indistinguishable Nd stable isotope composition, indicating that Earth’s excess 142Nd is best explained by a higher proportion of s-process Nd in the Earth.

Overall, this is a very impressive paper, both technically and scientifically. Congratulations Alex!

Finally, the Geochemistry Group committee would like to thank all the applicants/nominees for both Postdoctoral Awards. Both were extremely difficult decisions!

Deadline for the next round of applications: 15 January 2019